

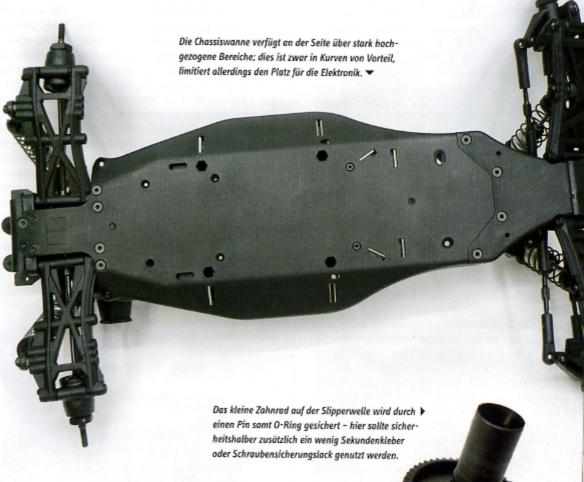
Durchdacht Cactus von 3Racing

Bereits die ersten CAD-Bilder zeigten eine durchaus wettbewerbsfähige Konstruktion. Doch was 3Racing nun als fertiges Modell präsentiert, ist ein wirklich durchdachtes Modell. Die ersten Prototypen im Internet waren noch Heckmotorvarianten, wohingegen der von uns getestete Neuling eine Mittelmotorversion ist.

Vielfältige Einstellmöglichkeiten finden sich nicht nur an der Vorder-, sondern auch an der Hinterachse. Zudem hat der Cactus die weitverbreiteten 12-mm-6-Kantmitnehmer an allen Achsen. ▼

Die Konstruktion...

... der Chassiswanne deutet allerdings auf eine zusätzliche Umbaumöglichkeit zum Heckmotormodell hin. Unserem Modell lag keine Anleitung bei, dennoch stellt das vormontierte Auto für den halbwegs geübten Bastler kein Problem dar. Des Weiteren gab es auch keine Teile für die Umrüstung auf die Heckvariante, diese werden bei den Serienmodellen laut Auskunft des Herstellers aber (natürlich neben der Anleitung) beiliegen. Ferner wird das Serienmodell nicht vormontiert, sondern als Bausatz ausgeliefert. Später will der Hersteller auch reine RTR-Versionen und einen Truck mit einem Kegeldifferenzial auf der Basis


dieses Modells sowie passende Tuningteile herausbringen.

Die verwendeten Teile unterstreichen aber schon jetzt die Wettbewerbsorientierung, denn neben R/L-Gewindestangen, einer kompletten Kugellagerung, einem von außen einstellbaren Kugeldifferenzial, CVD-Wellen und seidenweich reagierenden Big-Bore-Öldruckdämpfern wird hochwertiger Kunststoff verwendet. Fast alle Teile des Modells werden aus demselben Kunststoff gefertigt und durch hochwertige Inbusschrauben gelingt auch die Demontage der teilweise recht fest sitzenden Schrauben. Die für den Test obligatorische Demontage zeigte lediglich etwas wenig Schmierfett im Getriebe und im Kugeldifferenzial auf. Letzteres nutzt ein Dutzend jeweils 2,5 mm dicke Kugeln, um die Kräfte optimal auf die Abtriebe aus Stahl zu übertragen.

Das Getriebe

Der Aufbau des Kugeldifferenzials weist keine Besonderheiten auf, es sind weder Fertigungsnoch Montagefehler zu finden, und selbst an die korrekte Justierung des Spiels und des Schlupfes wurde gedacht. Das restliche Getriebe besteht neben dem Differenzial aus den für Mittelmotorfahrzeuge inzwischen üblichen zwei kleinen Zwischenzahnrädern und der Slipperwelle. Das Zahnrad auf der Slipperwelle ist mit einem Querstift gesichert und sollte neben dem O-Ring eine zusätzliche Sicherung durch Schrumpfschlauch oder Ähnliches bekommen. Die Demontage des Getriebegehäuses gestaltet sich aufgrund der

Konstruktion der hinteren Dämpferbrücke etwas aufwendiger. Die Brücke wird an diversen Punkten mit dem Getriebegehäuse verbunden und sorgt zusammen mit der Motorhalteplatte und einer Versteifung auf der rechten Seite für einen stabilen hinteren Teil. Das Hauptzahnrad des fertig montierten Slippers blockiert allerdings die eine oder andere Schraube zur Demontage des Getriebegehäuses. Da die Abdichtung des Getriebes sehr gut funktioniert und das Kugeldifferenzial von außen einstellbar ist, fällt eine Demontage aber eher selten an.

Aufhängung

Ungewöhnlich wurde der Zugriff auf die von der Dämpferbrücke verdeckten oberen Kugelkopfhalter der Querlenker gelöst. Die Dämpferbrücke hat hierzu an zwei Stellen nach oben angeordnete Langlöcher, wobei ein dünner Kugelkopfinbus durch die Langlöcher die Kugelköpfe erreichen kann. Es wurde genügend Platz für das komplette Versetzen des Kugelkopfes eingeplant. Der Einsatz von sauber gefrästen und eloxierten Aluteilen an den wichtigsten Stellen ist ein ger-

Ausgestattet mit 6-Kant-Slipperpads und sauber gefertigten Reibscheiben präsentiert sich der Slipper sehr solide. Das Hauptzahnrad ist mit 81 Zähnen im 48DP-Standard praxisgerecht dimensioniert.

Der klassische Aufbau des Stippers sorgt für eine feinfühlige Einstellbarkeit, nur die zur Demontage des Getriebes notwendigen Schrauben werden vom Hauptzahnrad verdeckt. ne gesehenes Extra. Hierzu zählen vor allem Teile der Aufhängung (vordere Halterung der hinteren Querlenkerstifte zum Beispiel) und die Motorhalteplatte samt Versteifung.

Die Querlenker und Achsträger lassen sich ohne E-Clips spielfrei montieren und verfügen über vielfältige Einstelloptionen. Die Felgenmitnehmer sind vorne und hinten im bekannten 12-mm-6-Kant-Standard gehalten und ermöglichen daher eine breite Auswahl an verfügbaren Felgen. Komplettiert wird die Hinterachse durch die beiliegenden CVD-Wellen. Diese sind aufgrund des großen Durchmessers ausgesprochen robust, zudem wird der Verbindungsstift in der CVD-Welle von einem großen Kugellager des Radträgers gesichert. Ähnlich gut durchdacht präsentiert sich die Befestigung des Motors, denn die Halteplatte kann für beide Motorpositionen genutzt werden und dennoch ist genügend Verschiebeplatz für die optimale Anpassung der Untersetzung gegeben.

Die Untersetzung...

... darf mit dem beiliegenden Hauptzahnrad maximal 81 zu 18 Zähne betragen, was für BL-Motoren bis hinunter zu 7,5T ausreichen sollte. Der Motor gibt seine Kraft über eine 48DP-Verzahnung auf die Rutschkupplung weiter. Diese verfügt über große sechseckige Reibpads und sauber gefertigte Andruckscheiben, um die Kraft gut zu verteilen. Der Anpressdruck der Slipper-Feder ist wie allgemein üblich über eine Öffnung in der Getriebeabdeckung zu verstellen. Die Verwendung einer kleinen Schraube zur Sicherung der mit einem Bajonettverschluss ausgestatteten Kappe ist allerdings hinderlich, wenn man schnell eine Änderung am Slipper vornehmen möchte. Das auf der recht schmalen Chassiswanne montierte Getriebe wird über eine Kunststoffversteifung mit dem mittleren Akkutunnel verbunden. Die Montage des Reglers kann sowohl auf der Versteifung vor dem Motor, als auch auf der Akkuklappe durchgeführt werden. Je nach Abmessungen des Reglers sollte dieser möglichst auf der Versteifung montiert werden, da dort mehr Fläche zum Befestigen vorhanden ist. Dann kann jedoch ein Ausschnitt in der direkt darunter liegenden Akkuklappe erforderlich werden, damit diese sich weit genug hochklappen lässt, um den Akku tauschen zu können. Der restliche Teil der sehr schmalen Chassismitte ist vom Schacht für den Akku geprägt, wobei bei der Mittelmotorversion zwingend ein Shorty-Akku genutzt werden muss. Allerdings kann man bei Einsatz eines Low-Profile-Servos und dem Abtrennen einer Versteifung am Chassis auch Stick-Packs unterbringen. Komplettiert wird die Wanne von einem separat angeschraubten vorderen Teil, der im Crashfall schnell austauschbar ist.

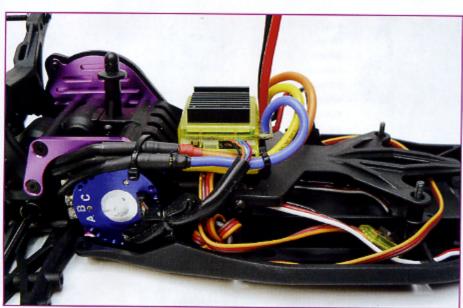
Materialqualität und Ausstattung

Die generelle Materialqualität und Ausstattung sorgt schon jetzt für viel Freude, was sich beim Betrachten der Lenkung fortsetzt. Diese Einheit ist wie das ganze Modell mit Kugellagern ausgestattet und ein auf dem Servo zu montierender Saver schützt das Servogetriebe. Die Dimensionen der Lenkungsteile wie auch der Querlenker und deren Halterung sind überdurchschnittlich groß.

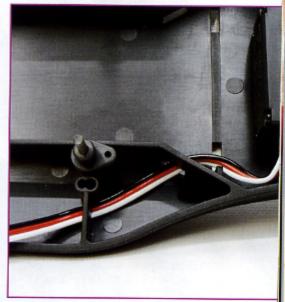
Die restliche Konstruktion ist ebenso solide ausgeführt und bewusst einfach gehalten, um Defekte auszuschließen. Der Nachlaufwinkel der Vorderräder lässt sich zwar nicht verstellen, allerdings verfügt der Cactus über alle weiteren relevanten Einstelloptionen zur Abstimmung. Der gute Eindruck setzt sich auch bei den gut gefüllten Stoßdämpfern fort, denn eine Entlüftung ist über die in der oberen Kappe angebrachte Schraube jederzeit möglich. Die Dämpfer sind ab Werk mit 300 CPS Silikonöl gut abgestimmt und sollten daher auch für mittlere Sprünge reichen. Da 3Racing keine speziell geformten Dämpferfedern verwendet, steht einem Tuning an dieser Stelle nichts im Weg, wobei derartige Teile demnächst auch von 3Racing erhältlich sind.

Elektronische Komponenten

Die Elektronik sollte mit Bedacht gewählt werden, denn gerade der Platz für Regler und Empfänger ist nicht üppig bemessen. Unter der unlackiert und unausgeschnitten beiliegenden Karosserie gibt es über der Versteifung allerdings nur knappen Raum nach oben für den Regler, ein Lüfter kann hier nicht untergebracht werden. Die Position auf der Akkuklappe bietet allerdings mehr als genügend Platz für einen Lüfter. Die Schnittlinien der Karosserie können im Bereich der Lenkung ruhig ignoriert werden. Deutlich kleinere Öffnungen als vorgesehen helfen, den Dreck im Chassis zu reduzieren. Zur Komplettierung lagen dem Vorserienmodell nur wenige Teile für den Servosaver und die Befestigung des Lenkservos bei. Als Lenkservo kann ein normal großes benutzt



werden, wobei man dann wie beschrieben bei der Mittelmotorversion Platzprobleme mit dem Fahrakku bekommt. Der Einsatz von Shorty-Akkus ist zwar grundsätzlich möglich, diese sind jedoch nicht bei jedem Rennen erlaubt. Die Wahl sollte daher besser auf ein Low-Profile-Servo fallen, um anschließend alle Optionen bei der Akkuwahl zu haben.


Abstimmung/Praxistest

Die weiteren Einstellungen lassen sich bequem auch an der Strecke erledigen, da die Zugänglichkeit generell sehr gut ist. Die Baukastenabstimmung sollte sich zunächst auf einer eher ebenen Strecke mit kleinen Sprüngen bewähren, doch schon bei mittleren Sprüngen musste die Federvorspannung um 3-4 mm angepasst werden. Nur kleine Einstellungen beim Slipper und beim Regler waren notwendig, um die Beschleunigung etwas sanfter zu gestalten. Der mit recht weichen Reifen ausgestattete Buggy konnte danach nur leicht übersteuernd und jederzeit kontrollierbar

Da die seitlichen Kästen kaum Platz für den Regler bieten, bleibt nur die Montage auf der Versteifung oder der Akkuklappe. Die knapp oberhalb des Reglers verlaufende Karosserie bedingt bei der ersten Position eine sehr kompakte Kabelverlegung.

Beim Cactus-2WD-Buggy können die Kabel auf beiden Seiten in speziellen Aussparungen verlegt werden. Längere Servokabel sind daher nicht unbedingt nötig.

Die Schutzkappe wird über einen Bajonettverschluss in Position gehalten und zusätzlich durch eine Schraube gesichert - dies ist für eine schnelle Slipperverstellung allerdings etwas hinderlich.

bewegt werden. Der 9,5T-Motor von Feigao verfügt über genügend Leistung. Das geringe Gewicht macht sich positiv bemerkbar, dies gilt auch bei Sprüngen oder Überschlägen: hier traten beim ausgiebigen Testen keine Schäden auf. So gab der Blick unter die Karosserie auch keinerlei Anlass zur Kritik, die wenigen Steinchen stellten kein Problem dar. Auch unter der Getriebeabdeckung gab es keinerlei Steine oder Schmutz. Auch das Laufgeräusch des Getriebes war unverändert, daher erübrigte sich eine abschließende Demontage des Getriebes. Das Kugeldifferenzial benötigte auch nach etlichen Akkus keine Veränderung der Einstellung.

Der Cactus von 3Racing ist also ein gelungener Buggy, mit den wichtigen Zutaten eines Rennmodells. Da das vormontierte Auto keinerlei Fehler aufwies und das generelle Fahrverhalten durchaus gutmütig ist, lässt sich der Cactus auch von

Einsteigern leicht beherrschen.

◆ Gut bis ins Detail: Die sauber gefertigten Dämpfer samt funktionierenden Entlüftungsschrauben und sogar teflonbeschichteten Alukugeln in den unteren Befestigungen.

TECHNISCHE DATEN

Cactus von 3Racing

Maßstab: 1:10 Klasse: 2WD-Buggy Länge: 407 mm Breite: 245 mm Höhe: 146 mm Radstand: 283-287 mm

Spurweite (v/h): 218/202 mm Reifendurchmesser (v/h): 85/87 mm Reifenbreite (v/h): 26/39 mm Gewichtsverteilung (v/h): 37/63%

AUSSTATTUNG DES TESTMODELLS

Fernsteuerung: Sanwa MX3x

Motor: Feigao 9,5T

Akku: 5.200 mAh Hardcase Stick Lenkservo: SM-S4408 Low Profile Gewicht: 1.578 Gramm (inkl. Akku)

Hersteller: 3Racing Bezugsquelle: Fachhandel

Lieferumfang: Vormontiertes Modell (inkl. klarer Karosserie und Felgensatz) ohne Elektronik und Reifen

DIE KONSTRUKTION

Chassis: Faserverstärktes Kunststoffchassis mit

Abdichtung durch Karosserie

Aufhängung: Einzelradaufhängung mit doppelten Querlenkern (oben einstellbar), Federung über Öldruckdämpfer/Feder-Kombination

Differenzial: Kugeldifferenzial (von außen einstellbar)

PRO & CONTRA

+ leichtgängiger Antriebsstrang

