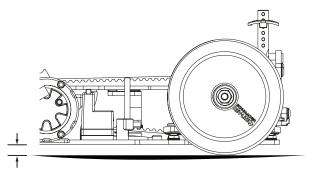


TRACK SETTINGS

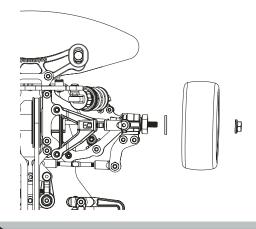

RIDE HEIGHT

Use the spring adjusters on the shock absorbers to adjust the front and rear ride heights. We recommend setting the ride height to around 5.0mm on carpet/ high traction tarmac/asphalt and 5.5mm on tarmac/asphalt or low traction carpet tracks.

This is measured between the bottom of the chassis and the ground with the car in running trim. First press the car down on to the ground and release it once or twice to settle the suspension before adjusting the ride height.

In general:

High traction levels/Smooth tracks =Lower ride height (5.1mm-5.4mm) Low traction levels/Bumpy tracks = Higher ride height (5.4mm-6.0mm)

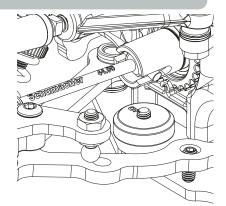


TRACK WIDTH

The track width may be adjusted using 2 different hex widths, or shims: U8333 - Wheel hex spacers 0.25, 0.5, 0.75mm - pk12

U4577 - Alloy wheel hex; Wide (pr)

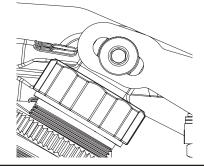
Increasing the rear track width provides more rear stability/less rotation and vice versa.Increasing the front track width provides a less agressive/less rotation and vice versa.A wider car is better suited to high traction conditions and a narrower car to low traction conditions.



WEIGHT DISTRIBUTION

There are several positions intended for weight placement in the front and rear of the car. Please see the setup sheet for suggested placements. We recommend the use of U8773 for this.

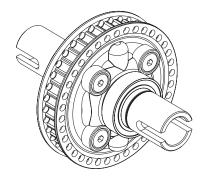
For the most neutral car balance, we recommend a 50:50 weight distribution. This is easily achieved with no weights and centrally placed electronics.


More rearwards weight generally gives a more agressive car with more steering. More forwards weight generally gives a smoother car handling with less steering. A more forwards weight bias will make the car easier to drive in higher grip conditions.

SHOCK ANGLES

The shock angles can provide fine tuning over the suspension stiffness. A more angled shock setup (lower number shock mount holes) creates a softer setup which is less responsive, often suited to high traction conditions.

A more upright shock setup (higher number shock mount holes) creates a stiffer setup which is more responsive, often suited to lower traction conditions.

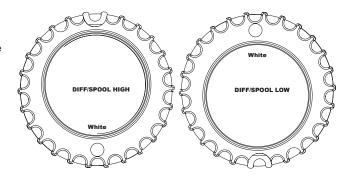


GEAR DIFF

Gear diff oil can be changed to affect car handling. Generally, high traction conditions = thicker oil. (2k-5k) Low traction conditions = thinner oil. (1K-2K),

A thicker gear diff oil will have a much smoother off power, corner entry feeling, preventing corner entry over rotation. It will also make the car feel less likely to slide off power, in the corner. It will however have more on power steering, and can feel like on power oversteer.

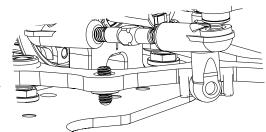
Thinner gear diff oil will create the opposite effect. More aggressive corner entry, and more steering off power in the corner. It will have less on power steering, but will feel much easier to put the power on without oversteering.


DIFF/SPOOL HEIGHT

The low diff or spool position provides more grip at that end of the car, and is suited to low or medium traction conditions.

Low diff is when the white circular marker is facing downwards in the car.

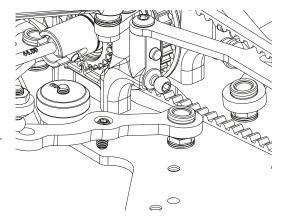
The high diff or spool position is only suggested for very high grip conditions


High diff is when the white circular marker is facing upwards in the car.

DROOP

The starting point for droop suggested by the team is 22.4mm rear, 23mm front. These numbers are checked on the Aerox droop gauge set. AX015. This is the measurement between the chassis underside and the axle centre. Droop is adjusted using the grub screw illustrated.

We suggest using a range between 20mm and 24mm depending on the track conditions. A lower number will give more grip and you can adjust the front and rear seperately to adjust the balance of the car.


LOWER WISHBONE SPACERS

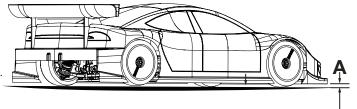
The kit setting is 1.0mm under all 8 wishbone lower balls.

Increasing the height of the arms = increased roll centres lowering the height of the arms = decreased roll centres

Increased roll centres help the car to be free and will rotate more. This helps when the traction is high or when the car has understeer. Decreasing the roll centres will make the car more stable and easier to drive, however on high grip tracks the car may have excessive understeer.

Anti-dive is commenly used to improve the cars handling going into corners as it makes the car more stable at lower speeds. You can achieve this by using a smaller washer at the front arms, this creates a downwards angle on the front arms.

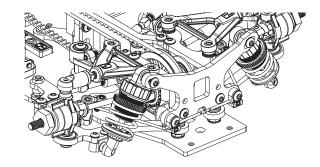
SHOCK OIL


The aim is to achieve improved handling over bumps and control the weight transfer of the car. If the track is particularly bumpy, increase the shock oil viscosity to help handling over bumps. If the traction is low, lowering the shock oil to improve weight transfer and generate more grip. If the traction is high, increasing the shock oil to make the car smoother and less unpredictable. In higher temperature, increase the shock oil to maintain a consistent rate in damping as warmer teperatures lower the viscocsity of the oil.

Our suggested range is between 300cSt and 500cSt, when using Core-Rc shock oil with kit pistons. The standard piston hole size is 1.1mm and if you are using larger holes it is likely thicker oil will be needed. If you are using a 3 hole piston then the hole size will need to be bigger to maintain similar ratings.

BODY HEIGHT

Height 'A' Should be set by adjusting the body hangers. For big adjustments move the pin up or down a hole. For smaller adjustments change which body hanger you are using. The 1 dot hanger is the lowest and the 3 dot hanger is the highest. We recommend starting with 7mm at 'B'. On a bumpy track you may need to increase this as the bodyshell might catch on the track. We recommend a rear wing height of 115mm from the floor to the rear wing when the car is in race trim.


Anti-Roll Bars

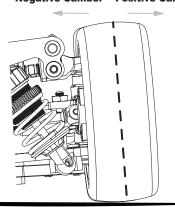
Anti roll bars allow the tuning of roll stiffness and change the way that the weight is transferred.

A stiffer rear roll bar will reduce entry steering but increase on power steering.

A stiffer front roll bar will increase entry steering, but provide a smoother handling through the middle of the corner.

The roll bars need to be set equally left to right. This is done by adjusting the drop link ball height. With the shocks off, check the roll bar lifts the opposite side when lifted to an equal height. A great tool for this is AX015.

CAMBER


In general the aim is to run the correct amount of camber for the tyre being used and the track conditions. Typically this is between -1.0°and -2.5°.

Increasing the front and rear camber together will often result in more traction, but with a more sudden loss of grip when going beyond the limit. Less overall camber will offer a more progressive slide but may have less overall grip.

More camber may be applied to the front or rear, normally resulting in more

at that end of the car. The team suggest a starting camber of 2.0° Rear and 1.5° Front, increasing to 2° Front camber if more front grip/steering is required.

Negative Camber Positive Camber

